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Abstract 
The adoption of Generative Artificial Intelligence (GenAI) in automating 
assessment has become increasingly popular in introductory computer science 
(CS1) modules, especially for large student cohorts. This study evaluates the 
effectiveness of a GenAI-based grading tool built using OpenAI API, in 
comparison to a traditional automated grading system. We conducted the study on 
formative assessments submitted by first-year students in the Object-Oriented 
Programming (OOP) module, which was graded by both systems. The findings 
reveal that the grades generated by the GenAI were as accurate as those produced 
by the automated grading system. These results suggest that the integration of 
GenAI into the grading process for formative assessments can optimise the marking 
and grading for educators and potentially improve student learning. 
 

Introduc.on 
Artificial intelligence (AI) is a distinctive research field within computer science 
(CS) (Crompton & Burke, 2023) and its recent advancements, particularly in 
Generative Artificial Intelligence (GenAI) are reshaping higher education (HE). In 
HE, the inclusion of AI and GenAI is becoming increasingly popular. This trend 
has heated intense debate surrounding the advantages, disadvantages, threats and 
opportunities that AI creates. Without robust policies, ethical frameworks, and 
collaborative guidance, the adoption of AI in HE may lead to unintended 
consequences (Bond et al., 2024). Despite a steady rise in research on GenAI in 
education over the last 5 years, key gaps remain, especially around assessment and 
grading, where academic integrity concerns are increasing (Tobler, 2024). 
 
Studies show that GenAI is increasingly used for tasks such as grading essays, 
evaluating free-text responses, and analysing cognitive engagement (Crompton & 
Burke, 2023). However, traditional coursework assessment and grading are under 
threat, encouraging educators to rethink how assessments are designed and 
evaluated (Chan, 2023; Raman & Kumar, 2022). Additionally, these should include 
the use of GenAI as Rudolph et al. (2023) advise against the idea of policing 



students or focusing on academic misconduct for using GenAI. To remedy the 
current need for evaluating grading methods and providing grading tools that are 
reliable within CS HE, in this study, a comparison was drawn between the designed 
automated grading system and a GenAI grading tool. 
 
This study addresses the current need for reliable, scalable tools in computer 
science education by comparing traditional automated grading systems with a 
GenAI grading tool. In particular, the study investigates the accuracy and efficacy 
of the two marking methods when assessing programming assessments. The main 
contributions of this work are: (a) a GenAI grading tool using different prompts 
that can be used by lecturers in CS1 modules to automatically grade formative 
assessments and (b) an empirical comparison of GenAI and automated grading 
systems in terms of accuracy and performance. 
 

Related Work 
Automated grading systems and tools for programming assessments have evolved 
significantly over the past decade. Traditional approaches often rely on static code 
analysis or unit testing to evaluate the correctness and functionality of code (Ala-
Mutka et al., 2004; Rahman & Nordin, 2007). However, these methods do not fully 
capture the reliability, efficiency, and complexity of the code, which are critical in 
educational settings (Van Verth, 1985). Other approaches, like static analysis, are 
becoming popular among automated testing techniques (Antonucci et al., 2015), as 
they mainly consider the source code and its abstraction representation, resulting in 
a fairer evaluation. Similarly, recent work has been done on the use of big data to 
collect data from programming assessments to identify behavioural patterns and 
learning flaws, but there is still a large amount of wasted data and tools that cannot 
fully capture code changes (Antonucci et al., 2015). 
 
Recently, there has been a proliferation of GenAI tools, specifically, Generative 
Pre-Trained Transformer (GPT-)3 being labelled by The Economist as "eerily 
human-like" and ChatGPT seen as "scary good, crazy-fun" (Kantrowitz, 2022) for 
automated programming assignment grading. Both GPT-3 and ChatGPT are owned 
by OpenAI, an organisation that has transformed from a non-profit to a for-profit 
corporation. Research indicates that ChatGPT can be used for automatic code 
checking, enabling teaching and grading large groups of students without 
burdening teacher times (Bang et al., 2023; Jukiewicz, 2024; Mekterovic & Brkic, 
2017; Rahman & Nordin, 2007; Rahman & Watanobe, 2023; Raman & Kumar, 
2022; Ullah et al., 2018). However, the effectiveness of using GenAI to grade 
formative assessments for large cohorts, compared to traditional unit test–based 
automated tools, remains underexplored. 



Methods 
Descrip(on of the Module 

This study was conducted within an introductory Object-Oriented Programming 
(OOP) module offered in the autumn term to both B.Sc. and M.Sc. Computer 
Science students.  The module provides foundational programming skills, covering 
topics such as control structures, data structures, classes and objects, inheritance, 
and file handling. Although the module includes both formative and summative 
assessments, this study focuses on a single formative task, which required students 
to implement and evaluate their code using lecturer-designed unit tests. Students 
were expected to verify test outcomes prior to submission. The module is supported 
by weekly two-hour lectures, two-hour lab sessions, lecturer office hours, and 
additional one-to-one drop-in sessions. 
 

Mo(va(on for the Project 

Over the past four years, assessments in the OOP programming module have been 
graded using standardised, test-case-based automated grading systems, primarily 
through unit testing. Lecturers design the unit tests, which are validated by teaching 
assistants (TAs) to ensure accuracy, reliability, and alignment with the assessment 
brief. Although the development of assessments and implementation of unit tests is 
time-intensive, automated grading significantly reduces marking time and 
promotes fairness by applying consistent evaluation criteria. Students are provided 
with unit tests to validate their code prior to submission, while an extended set of 
tests is used for final grading. The system assigns marks mainly based on test 
outcomes, requiring submissions to be valid, compilable Java code. However, this 
binary approach, which can be rigid, often results in full marks or zero, limiting 
edge assessment cases and occasionally necessitating additional moderation. 
 

Data Collec.on and Analysis 
As the purpose of the study was to determine whether GenAI grades assessments 
as accurately as the automated grading system given the large cohort of students, 
quantitative research was the most suitable methodology to adopt. 
 

Assessment Structure 

A formative programming assessment was designed to evaluate the creation of a 
single Java class that makes use of methods, constructors, getters, and setters. 
Students were provided with instructions and a Maven template project as a 
resource to create and develop the assessment. This project included a selection of 
unit tests that students could make use of to test their work before submission. It 



also included empty Java classes that students needed to update to complete the 
assessment. The students were given a week to complete the formative assessment 
and were required to submit the entire project folder to allow the automated grading 
system to grade it. 

 

Automated Grading 

For this module, an automated marking system based on “Junit” tests was used to 
evaluate students’ submitted code, as a project, and to provide a grade. The 
automated marking system required a working project that could be compiled to 
run the designed unit tests. The automated marking system also provided limited 
feedback in the form of a breakdown of the test results in a human-readable format, 
as shown in Figure 1. 
 
Figure 1 

Example Feedback from the Automated Grading System 
E0Feedback for: xxxxxxxxxx 
Marks:(TestName Mark) 
     add 1 
     multiply 1  
     subtraction 1 
     division 1  
     circle area 0 
     sphereVolume 1 
Total [ %]: 83.0 
Problems found before running tests: 

 

GenAI grading 

To perform the GenAI grading, a Python script was used to access the OpenAI API, 
using the “gpt-3.5-turbo-0125” model. Firstly, a prompt without specific 
assessment information, shown in Figure 2, was run on both assessments. The 
instructions given to the GenAI grading tool, seen in Figure 2, produced a result in 
a JSON format to allow for easy analysis.  
 
Figure 2 

Prompt 1 Used to Mark Formative Assessments 1 and 2 
You are a precise markings assistant designed to mark first year java programs and designed to 
output JSON. In the JSON name each method with its exact method signature and mark each 
method out of 1. Do not give half marks. 

 
Secondly, the specific assessment instructions for each formative assessment 
(shown in Figure 3 for formative assessment 1 and Figure 4 for formative 



assessment 2) were added to the prompt seen in Figure 2 above. All these prompts 
were run in conjunction with a user prompt to instruct the GenAI grading tool.  
 
Figure 3 

Prompt 2 Used to Mark Formative Assessment 1  
You are a precise markings assistant designed to mark first year java programs and designed to 
mark first year java programs and designed to output JSON. In the JSON name each method 
with its exact method signature and mark each method out of 1. Do not give half marks. 
Base the marks on the following question: 
Complete the class named BankAccount, which has 4 attributes: clientName, clientID, 
accountBalance and a boolean to check whether the account is closed or not.  
The class includes a constructor with 3 parameters 4 getters (1 for each attribute) and the 
following methods:  
deposit() method: the balance increases with the depositAmount;  
withdraw() method: the balance decreases with the withdrawalAmount; 
transferTo( ) method: the amount is transferred from the current account to another account 
(make use of the methods to update both balances accordingly); 
closeAccount() method: upon closing an account, the balance should be set to zero 
The class and method signatures are provided in the template file BankAccount.java 
All methods are tested in BankAccount.java 
Please follow the submission instructions on Canvas. 

 
Figure 4 

Prompt 2 Used to Mark Formative Assessment 2  
You are a precise markings assistant designed to mark first year java programs and designed to 
output JSON. In the JSON name each method with its exact method signature and mark each 
method out of 1. Do not give half marks. Base the marks on the following question: Complete 
the class named BillingManager, which includes a default constructor with VAT = 20%, a 
second constructor that takes in the VAT parameter so that the default value can be modified 
and three overloaded computeBill() methods for a book store: 
• When computeBill() receives a single parameter, it represents the price of one book ordered. 
Add the VAT and return the total due. 
• When computeBill() receives two parameters, they represent the price of the book, and the 
quantity ordered. Multiply the two values, add the VAT and return the total due. 
• When computeBill() receives three parameters, they represent the price of the book, the 
quantity ordered and a voucher value. Multiply the price and quantity, reduce the result by the 
voucher value, and then add the VAT and return the total due. 

 
For each student, the prompts in Figure 2, Figure 3 and Figure 4 were run for both 
formative assessments. This was repeated five times to improve consistency and 
minimise the impact of possible GenAI hallucinations. An example of the result 
generated by the GenAI grading tool is shown in Figure 5. One at the end of the 
statement indicates a mark; otherwise, if left blank, no mark was awarded. 
 
  



Figure 5 

GenAI Grading Tool Result 
{ 
     " BankAccount (String, int,double)":1, 
     " getName() " :1, 
     " getID() " :1, 
     " getBalance()":1, 
     " getClosed() ":1, 
     "deposit(double)":1, 
     "withdraw(double)":, 
     "closeAccount()":, 
"transferTo(BankAccount,double)":1  

} 

 

The total grades for each student’s submission were used in the comparison with 
the marks generated from the automated grading system. 
 

Results and Discussion 
To evaluate the statistical differences between the automated grading system and 
the GenAI grading tool using prompt 1 and prompt 2, a paired sample t-test and a 
correlation coefficient were used for this study. It is worth noting that prompt 1 
does not include the question context, while prompt 2 does include the question 
context. The total number of student code submissions was 781. 
 

Results 

Table 1 presents the individual score for each run, as well as the mean scores for 
both GenAI prompt 1 and prompt 2 for both formative assessments. The prompts 
were run separately five times to evaluate the consistency of each prompt. The 
average score for formative assessment (FA) 1 - prompt 1 across the five runs was 
99.39, while FA 1 - prompt 2 achieved an average score of 98.40 across all five 
runs. The average score for FA 2 - prompt 1 across the five runs was 97.28, while 
FA 2 - prompt 2 achieved an average score of 92.72 across all five runs. 
 

  



Table 1 

A Comparison of GenAI Prompt 1 and Prompt 2 over Five Runs for Both 
Formative Assessments 

 Formative Assessment 1 (FA 1) Formative Assessment 2 (FA 2) 
Runs Prompt 1 Prompt 2 Prompt 1 Prompt 2 

1 99.34 98.43 97.28 93.28 
2 99.52 98.66 97.31 91.73 
3 99.45 97.72 97.19 92.43 
4 99.48 98.82 97.27 93.01 
5 99.15 98.37 97.36 93.20 

Mean 99.39 98.40 97.28 92.72 

Table 2 presents a comparative analysis of the automated grading system against 
GenAI prompt 1 and prompt 2. The results show the mean of the automated 
marking and the mean of all the runs using prompt 1 and prompt 2; the difference 
in means between the automated marking and the means of running prompt 1 and 
prompt 2; a significance value generated from a T-test comparing both prompts to 
the automated marking; and a correlation coefficient comparing both prompts to 
the automated marking. 
 
Table 2 

A Comparison of Automated Grading System with GenAI Grading Tool 

 
 
 
 
 

Analysis 

Formative Assessment 1 Formative Assessment 2 

Automated 
Grading 
System 

GenAI Grading 
Tool 

Automated 
Grading 
System 

GenAI Grading Tool 

Prompt 1 Prompt 2 Prompt 1 Prompt 2 

mean 93.98 99.39 98.40 95.72 
 

97.28 94.79 

mean 
difference 

- 5.41 4.42  1.56 3.00 
 

significance - 8.06E-12 5.94E-09  0.013 
 
 

1.3415E-05 
 

correl. 
coefficient 

- 0.246 0.326  0.432 
 

0.436 
 

Table 3 shows a comparison similar to that of Table 2 between the automated 
grading system and GenAI grading tool; however, in this case all grades of zero 
provided by the automated marker, and their corresponding results from GenAI 
grading tool, were removed. The reason for this is due to the automated grading 
system only marking correctly compiled projects. Students whose code was 



technically correct but submitted in the incorrect format or with minor syntax 
errors, would receive zero from the automated grading system, while GenAI 
grading tool would assess the code. 
 
Table 3 

A Comparison of Automated Marking with GenAI, Zeros Removed 

 
 
 
 

Analysis 

Formative Assessment 1 Formative Assessment 2 

Automated 
Grading 
System 

GenAI Grading 
Tool 

Automated 
Grading 
System 

GenAI Grading Tool 

Prompt 
1 

Prompt 
2 

Prompt 1 Prompt 
2 

mean 98.92 98.92 99.60 97.98 
99.39 98.61 

mean 
difference 

- 
-0.678 0.005 

- 0.699 
 

3.44 

significance - 
0.006 0.984 

- 0.377 
 
8.91E-25 

 
correl. 
coefficient 

- 
0.361 0.406 

 0.920 
 

0.616 
 

 
The distribution of grades from the automated grading system is shown in Table 
4. 
 
Table 4 

Marks Distribution from the Automated Grading System 

Grade Occurrence 
0 39 

20 3 
40 1 
60 5 
80 15 

100 716 
 
The findings indicate a mixed set of results, showing that, given a set of 
circumstances, GenAI grading tool performs as well as the automated marking 
system on efficacy. The weak to moderate, positive correlation for prompt 1 
(r=0.361) and prompt 2 (r=0.406) for formative assessment 1, seen in Table 3, 
indicates that there is a relationship between the automated grading system and the 
GenAI grading tool. Similarly, for formative assessment 2 (seen in Table 3), prompt 
1 (r=0.919) and prompt 2 (r=0.615) show high levels of correlation. These results 
are discussed next. 



Discussion 

Several interesting points are worthy of discussion based on the results in the 
previous section. Firstly, Table 1 shows the consistency of the GenAI grading tool 
for both prompts. In other words, GenAI hallucinations were low. This could be 
due to a strong focus on providing GenAI with: (a) clear and specific prompts; (b) 
enough information; and (c) avoiding ambiguous prompts that could lead to 
misinterpretation. 
 
Secondly, Table 2, based on the low significance and correlation coefficient 
between the results of prompt 1 and prompt 2 in comparison to the marks from the 
automated grading system, shows that the automated grading system and GenAI 
grading tool results were notably different. 
 
Thirdly, to further identify whether this difference was due to errors in the way that 
the GenAI grading tool marks the assessments, the individual grades were 
inspected. It became clear that the automated grading tool marks had a higher 
bimodality, with most results being either 100% or 0% (see Table 4). 
 
Lastly, to investigate the impact of this bimodality, all grades of zero were removed 
from the data and the same comparisons were performed. The results of this in 
Table 3 indicate that the GenAI grading tool performs equally well as the automated 
marking system (based on means, significance and correlation coefficient). This is 
due to the fact, as mentioned above, that the automated marking system graded only 
correctly compiled code. 
 
The difference in results between prompt 1 and prompt 2 for formative assessment 
1 (in Table 3) is of interest. The GenAI grading tool with prompt 2 (i.e., with the 
question context included) more closely matches the automated grading system on 
all metrics (mean difference, significance, and correlation coefficient). From this, 
it seems that the inclusion of the question context in the prompt results in grading 
that is as accurate as that done by the automated grading system. In contrast for 
formative assessment 2, there is a much larger discrepancy between prompt 2 and 
the automated grading system. It seems clear that the inclusion of more context 
changes the result of the GenAI grading tool-based marking process. 
 

Conclusion 
The results suggest that GenAI could be a potential alternative to the automated 
grading system, especially in CS1 modules with large student cohorts. The use of 
GenAI could save lecturer marking time as well as assist in the development of unit 
tests and provide potential solutions. It could also enhance the student learning 
experience by using GenAI as a supportive tool. The findings further underscore 



the importance of conducting multiple runs when using GenAI grading tools to 
ensure consistency and reliability of assessment outcomes, and to mitigate the 
impact of potential hallucinations. Furthermore, it is interesting to note that 
providing GenAI with the assessment question, as well as eliminating the zeros, 
may infer that GenAI grading tools marked as accurately as the automated grading 
system.  
 
While these insights showcase the advantages GenAI may offer, it is crucial to 
reflect on broader pedagogical implications. Beyond reducing marking time, 
educators should also consider how GenAI can enhance fairness and transparency 
in assessment processes, ensuring that assessment practices are not only efficient 
but also equitable and explainable, thus providing meaningful feedback to students. 
Moreover, GenAI has the potential to democratise access to formative assessment 
while upholding academic standards.  
 
Nonetheless, this study highlights several limitations. The interpretability and 
transparency of GenAI grading decisions remain an area of concern, especially 
when complex or subjective criteria form part of the grading process. Further 
research needs to be conducted to understand how GenAI interprets and evaluates 
student work when providing more contextual information, including assessment 
instructions and marking criteria, to name a few. Ethical considerations around 
fairness, bias, and data privacy should be addressed to ensure responsible adoption. 
Additionally, the tendency of GenAI to generate inconsistent outputs across 
multiple runs necessitates further research into strategies that minimise 
discrepancies and enhance GenAI grading tools robustness. 
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