
FAKE NEWS ANALYSIS: PREDICTIVE CAPABILITIES AND
IMPLEMENTATION ON THE WEB WITH NEURAL

NETWORKS

Antonis Gantzos

GREECE

Abstract

The aim of this paper is the implementation of a website capable of

distinguishing fake from real news. Firstly, the training of two neural networks

was needed, one of which got integrated into the application and makes the

predictions using the logistic regression classifier algorithm. In order to train

both models, a dataset, containing predetermined values, was used. Afterwards,

the performances of both models were compared on various metrics, with the

most efficient being incorporated into the website. This process was executed

after appropriate preprocessing was performed on the dataset. Python

programming language was used for each step described in this research.

1. Introduction to Machine Learning Techniques

1.1 Definition of the Problem

Fake news and misinformation have become a constant problem in modern

society, influencing people, communities, and even worldwide events. With the

rise of digital news outlets and the ease of information dissemination on the

internet, the spread of false news has accelerated, leading to widespread

misinformation, confusion, and erosion of trust in traditional sources of

information. Fake or unreliable news cover a variety of false or misleading

information that are created in order to influence the receivers and prompt them

to form opinions according to the narrative that is being propagated. A study

conducted by the Electronic Cultural Press Center of the University

of Loughborough in 2019 (Chadwick & Vaccari, 2019) revealed that 42.8% of

individuals who share news admit to disseminating inaccurate or false

information knowingly. This paper aims to create a fake news detection system

that can easily be used by the general public to validate a news resource, while

simultaneously archiving the fake news it detects, creating a “digital library” of

false news. Τhe research can be split into three stages:

1. Introduction to neural networks and fundamental concepts of machine

learning and analysis of existing studies that cover similar issues.

2. Implementation of a neural network model capable of making

predictions based on a given dataset.

3. Integration of the model into a website and analysis of its capabilities.

1.2. Introduction to Machine Learning and Deep Learning

The basic idea of machine learning is that algorithms have the ability to

dynamically improve their results with each new execution. Machine learning

is categorized into two techniques: supervised learning, where the algorithm

learns a concept from a given model or dataset, and unsupervised learning,

where the system is tasked with making associations and grouping records that

share common characteristics, thus creating a pattern between them. The

effectiveness of a machine learning system is directly dependent on the quantity

and quality of the data provided as input into the system's algorithm.

Although deep learning is considered a sub-category of machine learning,

there are certain points that differentiate the two concepts:

• Training a deep learning algorithm requires a significantly larger

amount of data than what machine learning algorithms need to

understand the problem and make decisions.

• Deep learning algorithms require much more computational power due

to the complexity and volume of data needed in order to train them.

• Deep learning algorithms rely on the creation of neural networks in

order to make decisions on their own and perform corresponding

actions.

1.3. Introduction to Data Classification

Data classification is a fundamental concept in the field of artificial intelligence

and machine learning. It involves training a model to classify incoming data

into predefined categories or classes based on their features. There are four data

classification tasks in machine learning (Brownlee, 2020):

• Binary Classification: Binary data classification tasks involve one

class representing the normal condition of given data and another class

representing the abnormal condition, for example classifying an email

account as "non-spam", which would be the normal condition, in

contrast with "spam", which would be the abnormal condition. The class

for the normal condition is usually labeled as “0”, and for the abnormal

as “1”. Binary classification is often implemented with a model that

utilizes the Bernoulli probability distribution to make a prediction.

• Multi-class Classification: Multi-class classification refers to

classification problems that have more than two class labels. Unlike

binary classification, it does not have the notion of normal and abnormal

outcomes. Instead, each data entry in a set is categorized into one class

from a range of classes based on its features.

• Multi-Label Classification: This refers to classification tasks where a

data entry in a set can belong to more than one class.

• Imbalanced Classification: This refers to classification tasks where the

number of data entries in each class varies in size, thus creating an

imbalance in the data. Examples include fraud or anomaly detection.

A classification task is handled by implementing a classification algorithm.

The most common are Logistic Regression, Support Vector Machines, Decision

Trees, K-Nearest Neighors, and ; (Tan et al., 2018):

1.3.1 Logistic Regression

The basic idea behind logistic regression is to use a prediction function that

represents the data of entry x and makes a prediction y using the following

formula: 𝑃(𝑦=1|𝑥;w) = 1 / (1 + e^−z), where z = g(w^T x), with w^T defined as

a vector containing all parameters w for each x (feature) present in the dataset.

The result of the function is the probability that y=1, which holds whenever g(z)

≥ 0. Otherwise, the record's label is classified as 0 (see Figure 1 below).

Figure 1

Data Normalization using Logistic Regression

Note. From “Logistic Regression Explained in 7 Minutes”, by N. Selvaraj,

2022. (https://www.natasshaselvaraj.com/logistic-regression-explained-in-7-

minutes/)

1.3.2 Support Vector Machines

The Support Vector Machine algorithm uses the principle of structural risk

minimization to set linear or nonlinear decision boundaries in the space between

features, ensuring good performance. Furthermore, it provides very strong

adaptation capabilities, controlling the model's complexity to ensure good

performance without causing overfitting problems (see Figure 2 below):

https://www.natasshaselvaraj.com/logistic-regression-explained-in-7-minutes/
https://www.natasshaselvaraj.com/logistic-regression-explained-in-7-minutes/

Figure 2

Data Classification using SVM

Note. From “Support Vector Machine Algorithm” by Javatpoint.com, (n.d.),

(https://www.javatpoint.com/machine-learning-support-vector-machine-

algorithm)

1.3.3 Decision Tree

The Decision Tree is a non-parametric algorithm used for data classification or

regression problems. This means that no assumption about the shapes of the

distributions are made, but are approximated by a process of smoothing. It has

a hierarchical tree structure consisting of a root node, branches, internal nodes,

and leaves. Each node in the tree specifies a test on a data entry, each branch

descending from that node corresponds to one of the possible values for that

attribute (see Figure 3 below).

Figure 3

Diagram of a Simple Decision Tree

Note. From “Random Forest,GBM(Gradient Boosting Machines)” by C. Kök,

2022 (https://medium.com/@trcahit/random-forest-gbm-gradient-boosting-

machines-7cca3badf39b)

https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://medium.com/@trcahit/random-forest-gbm-gradient-boosting-machines-7cca3badf39b
https://medium.com/@trcahit/random-forest-gbm-gradient-boosting-machines-7cca3badf39b

1.3.4 K-Nearest Neighbors

K-Nearest Neighbors is a non-parametric algorithm that measures the distance

between points to make predictions by identifying the closest "neighbors" of a

given point. Working on the assumption that similar points can be found close

to each other, the goal of the K-Nearest Neighbors algorithm is to identify the

closest "neighbors" of a given data entry and assign a class label to it. The

Euclidean Distance formula is commonly used to measure the distance of a

given point from its neighbors (see Figure 4 below).

Figure 4

K-Nearest Neighbors algorithm example

Note. From “What is the k-nearest neighbors (KNN) algorithm?”, by IBM,

(n.d.) (https://www.ibm.com/topics/knn)

1.3.5 Naive Bayes

Based on Bayes' theorem, the Naive Bayes algorithm assumes independence

between features and calculates the probability that a given input instance

belongs to a specific class.

1.4. Introduction to Neural Networks

 A neural network is a method in artificial intelligence that teaches computers

to process data in a manner similar to the human brain. It is a type of deep

learning process that uses interconnected nodes (neurons) in a layered structure

resembling the human brain. This creates an adaptive system that a model can

use to learn from its mistakes and continuously improve on its predictions

(Amazon Web Services, n.d.). A neural network can be structured into three

basic layers:

1. Input Layer. Input data enters an artificial neural network through the

input layer. The input nodes process, analyze, or categorize the data

and pass it to the next layer.

2. Hidden Layers. Data is received from an input layer or other hidden

layers. Each hidden layer analyzes the output from the previous layer,

processes it further, and passes it to the next layer.

https://www.ibm.com/topics/knn

3. Output Layer. This provides the final outcome of all data processing

done by previous layers. It can have a single or multiple nodes,

depending on the classification task the neural network is working

on. The architecture of a neural network can be seen in Figure 5

Figure 5

Architecture of a Neural Network

Note. From “Building a Basic Neural Network from Scratch: A Step-by-Step

Guide”, by D. Bhatnagar, 2023, Medium,

https://bhatnagar91.medium.com/building-a-basic-neural-network-from-

scratch-a-step-by-step-guide-7a6f97979ddd/

Having covered the basic ideas behind neural networks, all that remains is to

answer the following question: How is a neural network trained? In supervised

learning, artificial neural networks are given labeled datasets that provide the

correct answer in advance and gradually build knowledge step by step by

making repeated predictions on these datasets. Once the network is trained, it

begins to make estimates about data it has never processed before.

1.5 Related Research

In related research, the following articles propose various approaches for

detecting fake news using a variety of machine learning techniques.

Sanei et al. (2017), have explored ways to increase the efficiency of the KNN

algorithm to provide better results for their model’s predictions. The algorithm

is used to select the best parameters for the nonlinear functions that are most

suitable for each feature, with results being generally better compared to those

in a similar study conducted Nair and Kashyap (2019), who proposed the use of

resampling and interquartile range (IQR) techniques in the data preprocessing

steps, which are normalized for better algorithm performance.

https://bhatnagar91.medium.com/building-a-basic-neural-network-from-scratch-a-step-by-step-guide-7a6f97979ddd/
https://bhatnagar91.medium.com/building-a-basic-neural-network-from-scratch-a-step-by-step-guide-7a6f97979ddd/

Kesarwani et al. (2021) created a fake news detection model based on news

headlines, as well as various articles and news frequently appearing on several

users' social networks.

Nagashri and Sangeetha (2021) attempted to identify fake news using

evaluation metrics techniques and tested many machine learning concepts based

on accuracy, precision, recall, and F1 score, concluding that the TFIDF

vectorizer should be the most preferred text preprocessing technique. Further

reference to the metrics used to measure the performance of a model will be

made in section 2 of this paper.

Vijayaraghavan et al. (2020) attempted to define a connection between words

and the context in which they appear within the text, as well as how they could

be used to categorize a given news article as true or fictional. They used models

such as Count Vectorizer to convert texts into numerical representations and

investigated which model is capable of more accurately determining the article

as real or fake.

2. Fake News Detection System

2.1 Introduction

This section of the paper describes the methodology and steps followed to

implement and train a neural network model. Initially, a training dataset was

used, to which various natural language processing techniques were applied.

Subsequently, two neural network models are created: a linear and a non-linear.

The two models were compared based on certain metrics, and the model that

produced the greater results was integrated into the website.

2.2 Dataset Description

The dataset used is sourced from the GitHub repository (Lifferth, 2018) and

consists of a collection of news articles. Each news article corresponds to a

record in the dataset, with the following features:

• ID: The record number.

• Title: The title of the news article.

• Author: The name of the author who wrote the article text.

• Text: The text of the news article.

Each record also includes a label, which can take two values: 0 or 1. This value

assists in categorizing a news article as true, if the value is “0”, or false, if the

value is “1”. The dataset comprises approximately 10,000 records.

For the model implementation, Python was utilized in conjunction with the

PyTorch library for creating the neural network. Pandas, Scikit-learn, and

https://github.com/AntonisGantzos/Pytorch_Fake_News_detection/blob/main/data.zip

NumPy were used for data preprocessing and result evaluation. A general

format of the dataset is seen in Figure 6.

 Figure 6

 A general format of the dataset

2.3 Data Pre-processing

Due to the natural language from which the texts representing the data are

composed, some noise must be removed before data is fed into a neural network.

In order to make input data suitable for the algorithms to operate, it undergoes

various pre-processing techniques aimed at smoothing the dataset. These

techniques are as follows:

• Removal of duplicate and missing records: Entries that appear more

than once in the dataset and entries that do not provide any information

that can be utilized later are removed.

• Conversion of all letters to lowercase: This technique aids in

uniformity among the dataset's entries and facilitates their processing.

• Removal of punctuation marks from each entry: Performed for

similar reasons as lower case conversion.

• Removal of unnecessary words in each entry of the set (Stopwords

removal): Stopwords are essentially words that add value to other

words or define a relationship between words. These may include

various adjectives, adverbs, prepositions, conjunctions, and pronouns.

Since the dataset includes various articles, it is necessary to remove

these words before data is provided as input.

• Use of Count Vectorizer: The final step in data preprocessing is to

convert the text given as input to the model into a vector. Vectorization

is a process of converting words in a text to a form that can be read by a

machine. Therefore, before being given as input to the model, all

texts must be represented as vectors (tensors). Each value of the vector

represents the frequency of each word in the text. For performing this

conversion, the capabilities of a Count Vectorizer are utilized, which,

for a given text, creates an array where each position represents a unique

word in the text, and the corresponding value of that position represents

the frequency of the word (Jain, 2021).

2.4 Model Implementation

The next step is to implement a model of a neural network, which is observed

in Figure 7. This model was implemented based on the architecture of neural

networks analyzed in the previous section. The flow can be clearly observed in

the image below. In __init__() function, the 2 layers that will process the

input data are initialized. The actual processing is executed in the forward()

function. For the hidden layers, the number hidden neurons that will perform

the computations is set as relatively small, considering the simplicity and

volume of the data, while the number of features that will be inputted is set as

one, as well as the number of features that will be produced as output, since the

goal is to have one result for each news article (0 for true news or 1 for fake

news).

Figure 7

Neural Network Model

A similar process will be followed for the development of the second model,

which, unlike the current one that employs a Linear approach, utilizes Non-

Linearity for processing. However, before continuing with the training of both

models, it is necessary to clarify the process followed by each of the two

approaches mentioned, as well as their differences.

2.5 Linearity vs Non-Linearity

There are two types of neural network models: linear and non-linear.

2.5.1 Linearity

In many cases, linearity is the simplest and most effective approach. A linear

model, essentially, fits a straight line to the data, allowing it to make predictions

based on a linear relationship between the input features and the output variable.

For this process, the linear regression function is utilized: y=b0+b1⋅x1, where

y is the dependent variable (prediction outcome), x1 is the independent variable

or feature, b0 is the intercept of y with the y-axis (constant), and finally b1 is

the slope coefficient.

2.5.2 Non-Linearity

Non-linear neural network models can take many forms, from polynomial

models that fit curves to the data, to neural networks that can learn complex

patterns in high-dimensional data. Non-Linear models are often more powerful

their Linear counterpart, because they can recognize more complex

relationships between variables. In a classification problem, non-linear models

can identify more complex than linear decision boundaries that define different

classes. However, they may be more challenging to use than linear models, as

they usually require much more training data and computational power to

achieve good results (Zarra, 2023).

2.6 Training the Models

The next step after preprocessing the data is implementing the training process.

A train_test_split method is used to split the dataset into two parts. It is defined

that 80% of the records of the dataset will be used for training the algorithms,

and the remaining 20% will constitute the test sample size. All columns of the

dataset are concatenated, forming a unified column, and the data is then split

and passed to the Count Vectorizer.

For training a neural network model, the following concepts need to be

introduced and implemented (Patil, 2023):

• Loss Function: Also known as a cost function, a loss function is used

to measure the accuracy of a model's predictions. It calculates the

difference between the predicted output and the actual output for each

training sample. The goal of the model is to minimize the loss function

by the end of training. The smaller the loss function, the better and more

accurate the model's parameter set will be in producing predictions.

• Optimizer: The optimizer adjusts the model's parameters to gradually

minimize the loss function. It's worth noting that optimizers can also

adjust various hyperparameters, such as the learning rate, momentum,

and others. The main optimizers include Gradient Descent (GD),

Stochastic Gradient Descent (SGD), and Adaptive Moment

Estimation (Adam). In this particular study, it was determined that the

Stochastic Gradient Descent optimizer was better suited for training the

models.

The process of training the models involves the following steps:

• Input data is passed through the forward() function for processing, done

by the hidden layers of the network, and the model makes a prediction

on it.

• The loss function is computed, estimating how close the model's

prediction was to the actual label of the data. The desired output is the

gradual minimization of loss function, which indicates good

performance.

• The Stochastic Gradient Descent (SGD) algorithm is used to improve

the model's parameters, so that the next prediction is more accurate than

the previous one in order to make the loss function decrease.

• The process is repeated for a certain number of epochs, providing the

models with enough opportunities to learn from their mistakes and

improve their performance. The goal is for the loss function of each

model to reach as close to zero as possible.

Each iteration recalculates the evaluation metrics of the models, which will be

discussed in more detail below.

It's also worth noting the process of converting the model's output values into

the desired output values, namely “0” or “1”. The values output by the model

are called logits, and they are the values generated by a neural network before

applying an activation function. They are the non-normalized probabilities of a

data entry to belong to a certain class. Converting logits into probabilities

makes it easier to understand the final output of the neural network for each

prediction. The activation function chosen for this conversion is the sigmoid

function, which can be seen in Figure 8 below. As shown in the diagram below,

this function, after converting logits into probabilities, applies the following

rule: If the probability is greater than or equal to 0.5, then the output value is 1;

otherwise, the output value is 0. Therefore, the output given from both models is

the probability of a news item being fake.

Figure 8

Sigmoid Function

Note. From “Sigmoid function”, Wikipedia

(https://en.wikipedia.org/wiki/Sigmoid_function)

https://en.wikipedia.org/wiki/Sigmoid_function

2.7 Evaluation Metrics

After completing the training, it is important to highlight the generated results.

The metrics of Accuracy, Precision, Recall, are used to measure the

performance of the models (Agrawal, 2024).

2.7.1 Accuracy

Accuracy measures how often the classifier predicts correctly. We can define

accuracy as the ratio of the number of correct predictions to the total number of

predictions. Correct predictions are those categorized correctly as 0 (True

Positives or TP) and those categorized correctly as 1 (True Negatives or TN),

while incorrect predictions are data points that, although their true output value

should be 1, the model predicts as 0 (False Positives or FP), or vice versa

(False Negatives or FN). The combination of these four categories constitutes

the total predictions of the model. Its formula can be seen in Figure 9 below.

Figure 9

Formula for calculating the Accuracy metric

Note. From "Metrics to Evaluate your Classification Model to take the right

decisions" by S. K. Agrawal, 2024, Analytics Vidhya,

https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-

classification-model-to-take-the-right-decisions/)

2.7.2 Precision

Precision is used to measure how many of the correctly predicted instances

actually turned out to be positive. It is useful in cases when a False Positive is

more concerning than a False Negative. Its formula can be seen below.

Figure 10

Formula for Calculating the Precision Metric

Note. From "F1 Score in Machine Learning: Intro & Calculation" by R.

Kundu, 2024, V7labs (https://www.v7labs.com/blog/f1-score-guide)

https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/
https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/
https://www.v7labs.com/blog/f1-score-guide

2.7.3 Recall

Recall explains how many of the actual positive instances were correctly

predicted by the model. Recall is a useful measure in cases when a False

Negative is more concerning than a False Positive. Its formula can be seen in

Figure 11 below.

Figure 11

Formula for Calculating the Recall metric

Note. From "F1 Score in Machine Learning: Intro & Calculation" by R. Kundu,

2024, V7labs (https://www.v7labs.com/blog/f1-score-guide)

2.7.4 F1 Score

An F1 Score is the average of Precision and Recall. It is commonly used when

there is a need for a balanced use of both factors in a model evaluation. Its

formula can be seen in Figure 12 below.

Figure 12

Formula for calculating the F1 metric

Note. From "F1 Score in Machine Learning: Intro & Calculation" by R. Kundu,

2024, V7labs (https://www.v7labs.com/blog/f1-score-guide)

Regarding the dataset in this study, it is observed from Figure 13 that the entries

constituting the dataset are almost equally distributed. In such a case where

there is no issue of imbalanced classes, the most important metric to consider is

Accuracy, as well as the loss function results of each model.

https://www.v7labs.com/blog/f1-score-guide
https://www.v7labs.com/blog/f1-score-guide

Figure 13

General dataset shape

 2.8 Model Comparison Review

This section compares the performance results of the linear and non-linear

models.

2.8.1 Linear Model

The performance results of the linear model can be observed from the

following diagrams, beginning with Figure 14.

Figure 14

Performance Measurement Results of the Linear Model over Five Epochs

It is observed that both in the training data and the test data, the loss function

steadily decreases as the model learns from its previous predictions, while

accuracy reaches nearly 95% correct predictions with the other metrics

following closely behind with slightly lower percentages. Additionally, it is

considered positive that the measurement results in the test data do not differ

much from those in the training data, as this indicates that the classifier is not

overfitting the training data to the point where it can only make predictions on

them and no other dataset that it has no prior knowledge on, as seen in Figures

15 and 16 below.

Figure 15

Diagrammatic Representation of Linear Model Results

Figure 16

Accuracy Visualization of Linear Model Results using Confusion

Matrix

2.8.2 Non-Linear Model

The performance results of the non-linear model can be observed from Figures

17 and 18. It is observed that both in the training data and the test data, the loss

function remains steady throughout the model training process, as does the

prediction accuracy, with a percentage of approximately 43%. Since it performs

binary classification, this percentage is worse than even a random guess.

Figure 17

Results of Non-linear Model Performance Measurements per Five Seasons

Figure 18

Diagrammatic Representation of Non-linear Model Results

It is concluded from the superior performance of the linear model, as

documented above, that the linear model will ultimately be integrated into the

website. Further analysis will follow in the next section to showcase it in more

detail.

3. Fake News Detection Application

3.1 Introduction

In the previous section, the methodology for creating and training a neural

network model to make predictions was discussed. In this section, the focus of

the study will be the implementation and functionalities of a website that

integrates the aforementioned model. This website allows users to make

predictions and effectively verify the validity of the information they consume.

These predictions are stored in a database, which functions as a "digital fake

news repository," providing a dataset that can be utilized by anyone conducting

a similar research.

3.2 Application technologies

• React.js | Frontend framework: Used on all application pages

related to the User Interface for user interaction with the application

and its functionalities.

• Python Flask | Backend framework: Used to create the server and

for the interaction of the website with the database.

• MySQL Database | Relational Database

3.3 Database Analysis:

The database consists of a single table, which includes the following fields:

• ID: Unique attribute of each record in the database

• Article: Text describing a news article

• Fake Probability: Probability that the news article should be

considered false information

• Label: Takes only 2 values, “0” or “1”, depending on whether a news

source is true or false.

3.4 Application Functionalities

The website performs three basic functions: News Prediction, Display of Fake

News, and Database Data Export.

3.4.1 News Prediction

News prediction is the most basic function of the application. Since the model

has been integrated into the website, a user interface is implemented for users

to utilize its prediction capabilities. A text area is created where the user enters

the text of an article they want to verify, and by pressing the Predict button on

the left, the server response appears, indicating whether the news is reliable or

not, along with the probability of it being fake news. It is noted here that since

news labeled “0” is defined as true and news labeled “1” is defined as false, the

closer the probability received by the user is to 1, the more likely it is that the

article should be considered false information. Additionally, by pressing the

second button on the right, brief instructions on the application's functionality

are provided, as well as contact information to enable users to provide feedback

for possible future improvements. An example prediction result can be seen in

Figure 19.

Figure 19

Prediction Results

3.4.2 Display of Fake News Database

After each prediction, the news article provided by the user is inserted into the

table analysed in the previous section, provided that the news has not been

previously entered, ensuring each record is unique. The probability of the news

being fake, as well as its label, is also stored. The table, which is seen in Figure

20, is presented on the website using the React framework. The collection of

news articles is organized into table pages, using a custom paginator.

Additionally, a search filter is provided so that users can research specific news

articles.

Figure 20

Data display in table

3.4.3 Database Data Export

Finally, the website allows the user to export the stored data from the database,

with the aim of creating a new dataset that can be used in similar studies. This

functionality of the website is activated by pressing the button shown below.

The result is presented in Figures 21 and 22; the first 7 data rows in Figure 21

correspond to the seven articles in Figure 20.

Figure 21

Export Results

Figure 22

Export button

3. Conclusion

This paper focuses on detecting fake news on the internet using machine

learning. A neural network, implementing binary classification on data, was

developed, labeling reliable information sources with “0” and unreliable

sources with “1”.

From the literature review, it was found that the best approach to the problem

is binary classification. During the implementation methodology, two neural

network models were created: one linear and one non-linear. After

preprocessing the input data, both models underwent the exact same training

process. Their performance was compared under the same conditions, using

metrics such as prediction accuracy and recall. The linear model outperformed

the non-linear one and was integrated into the website to allow users to check

their information sources as effectively as possible.

The study concludes that, although the non-linear approach is usually

considered to produce better results for applications dealing with simpler

datasets with less complexity and fewer dimensions, the linear approach is more

likely the best solution due to the utilization of Linear Regression, which is

more effective for datasets with a smaller number of dimensions.

References

Agrawal, S. K. (2024, February). Metrics to evaluate your classification model

to take the right decisions. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-

your-classification-model-to-take-the-right-decisions/

Amazon Web Services. (n.d.). What is a neural network?

https://aws.amazon.com/what-is/neural-network/

Bhatnagar, D. (2023). Building a Basic Neural Network from Scratch: A Step-

by-Step Guide. Medium. https://bhatnagar91.medium.com/building-a-

basic-neural-network-from-scratch-a-step-by-step-guide-

7a6f97979ddd/

Brownlee, J. (2020, November). 4 types of classification tasks in machine

learning. Machine Learning Mastery.

https://machinelearningmastery.com/types-of-classification-in-

machine-learning/

Chadwick, A., & Vaccari, C. (2019). News sharing on UK social media:

Misinformation, disinformation, and correction survey report.

Loughborough University. Report. https://hdl.handle.net/2134/37720

IBM. (n.d.). What is the k-nearest neighbors (KNN) algorithm?

https://www.ibm.com/topics/knn

Jain, P. (2021, May). Basics of count vectorizer. Towards Data Science.

https://towardsdatascience.com/basics-of-countvectorizer-

e26677900f9c

Javatpoint. (n.d.). Support vector machine algorithm.

https://www.javatpoint.com/machine-learning-support-vector-

machine-algorithm)

Kesarwani, A., Chauhan, S. S., Nair, A. R., & Verma, G. (2021). Supervised

machine learning algorithms for fake news detection. In Advances in

Communication and Computational Technology: Select Proceedings of

ICACCT 2019 (pp. 767-778). Springer Singapore.

https://doi.org/10.1007/978-981-15-5341-7_58

Kök, C. (2022). Random Forest,GBM(Gradient Boosting Machines).

https://medium.com/@trcahit/random-forest-gbm-gradient-boosting-

machines-7cca3badf39b

Kundu, R. (2024). F1 Score in Machine Learning: Intro & Calculation.

V7labs. https://www.v7labs.com/blog/f1-score-guide

https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/
https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-the-right-decisions/
https://aws.amazon.com/what-is/neural-network/
https://bhatnagar91.medium.com/building-a-basic-neural-network-from-scratch-a-step-by-step-guide-7a6f97979ddd/
https://bhatnagar91.medium.com/building-a-basic-neural-network-from-scratch-a-step-by-step-guide-7a6f97979ddd/
https://bhatnagar91.medium.com/building-a-basic-neural-network-from-scratch-a-step-by-step-guide-7a6f97979ddd/
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://www.ibm.com/topics/knn
https://towardsdatascience.com/basics-of-countvectorizer-e26677900f9c
https://towardsdatascience.com/basics-of-countvectorizer-e26677900f9c
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://doi.org/10.1007/978-981-15-5341-7_58
https://medium.com/@trcahit/random-forest-gbm-gradient-boosting-machines-7cca3badf39b
https://medium.com/@trcahit/random-forest-gbm-gradient-boosting-machines-7cca3badf39b
https://www.v7labs.com/blog/f1-score-guide

Lifferth, W. (2018). Fake News. Kaggle.

https://kaggle.com/competitions/fake-news

Nagashri, K., & Sangeetha, J. (2021). Fake news detection using Passive-

Aggressive Classifier and other machine learning algorithms. In S.M.

Thampi, E. Gelenbe, M. Atiquzzaman, V. Chaudhary, & KC Li, (Eds.)

Advances in computing and network communications: Lecture notes in

electrical engineering, 736. (pp. 221-233). Springer, Singapore.

https://doi.org/10.1007/978-981-33-6987-0_19

Nair, P., & Kashyap, I. (2019). Hybrid pre-processing technique for handling

imbalanced data and detecting outliers for KNN classifier. In 2019

International Conference on Machine Learning, Big Data, Cloud and

Parallel Computing (COMITCon) (pp. 460-464). IEEE. doi:

10.1109/COMITCon.2019.8862250

Patil, S. U. (2023, January). Loss functions and optimizers in ML models.

Medium. https://medium.com/geekculture/loss-functions-and-

optimizers-in-ml-models-b125871ff0dc

Sanei, F., Harifi, A., & Golzari, S. (2017). Improving the precision of KNN

classifier using nonlinear weighting method based on the spline

interpolation. In 2017 7th International Conference on Computer and

Knowledge Engineering (ICCKE) (pp. 289-292). IEEE. doi:

10.1109/ICCKE.2017.8167893

Selvaraj, N. (2022). Logistic Regression Explained in 7 Minutes.

https://www.natasshaselvaraj.com/logistic-regression-explained-in-7-

minutes/)

Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2018). Introduction to

data mining (2nd ed., pp. 147-174). Pearson.

Vijayaraghavan, S., Wang, Y., Guo, Z., Voong, J., Xu, W., Nasseri, A., Cai, J.,

Li, L., Vuong, K., & Wadhwa, E. (2020). Fake news detection with

different models. arXiv preprint arXiv:2003.04978. Cornell University.

https://doi.org/10.48550/arXiv.2003.04978

Zarra, R. (2023, March). Machine learning: Linearity vs non-linearity.

LinkedIn. https://www.linkedin.com/pulse/machine-learning-linearity-

vs-nonlinearity-reday-zarra/

Author Details

Antonis Gantzos

GREECE

antonisgantzos@gmail.com

Editors’ note: This is a pre-publication copy of the paper and intentionally

does not include page numbers, which will be included in the complete

proceedings of ICICTE 2024.

https://kaggle.com/competitions/fake-news
https://doi.org/10.1007/978-981-33-6987-0_19
https://medium.com/geekculture/loss-functions-and-optimizers-in-ml-models-b125871ff0dc
https://medium.com/geekculture/loss-functions-and-optimizers-in-ml-models-b125871ff0dc
https://www.natasshaselvaraj.com/logistic-regression-explained-in-7-minutes/
https://www.natasshaselvaraj.com/logistic-regression-explained-in-7-minutes/
https://doi.org/10.48550/arXiv.2003.04978
https://doi.org/10.48550/arXiv.2003.04978
https://www.linkedin.com/pulse/machine-learning-linearity-vs-nonlinearity-reday-zarra/
https://www.linkedin.com/pulse/machine-learning-linearity-vs-nonlinearity-reday-zarra/
mailto:antonisgantzos@gmail.com

	Abstract
	1. Introduction to Machine Learning Techniques
	1.1 Definition of the Problem
	1.2. Introduction to Machine Learning and Deep Learning
	1.3. Introduction to Data Classification
	1.3.1 Logistic Regression
	1.3.2 Support Vector Machines
	1.3.3 Decision Tree
	1.3.4 K-Nearest Neighbors
	1.3.5 Naive Bayes

	1.4. Introduction to Neural Networks
	1.5 Related Research

	2. Fake News Detection System
	2.1 Introduction
	2.2 Dataset Description
	2.3 Data Pre-processing
	2.4 Model Implementation
	2.5 Linearity vs Non-Linearity
	2.5.1 Linearity
	2.5.2 Non-Linearity

	2.6 Training the Models
	2.7 Evaluation Metrics
	2.7.1 Accuracy
	2.7.2 Precision
	2.7.3 Recall
	2.7.4 F1 Score

	2.8 Model Comparison Review
	2.8.1 Linear Model
	2.8.2 Non-Linear Model

	3. Fake News Detection Application
	3.1 Introduction
	3.2 Application technologies
	3.3 Database Analysis:
	3.4 Application Functionalities
	3.4.1 News Prediction
	3.4.2 Display of Fake News Database
	3.4.3 Database Data Export

	3. Conclusion
	References
	Author Details

